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Abstract

I want to derive the required power for the HOM resistors for the HOM modes of the cavity.
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I. THEORY

The first thing to do is to calculate the spectrum of the beam in Booster. The most

obvious thing is that the beam is not even in intensity in every bucket and there is a 3

bucket notch as well. So, we cannot expect the spacing of the spectrum be “δ-functions”

that are separated by the RF frequency. Instead, I have to derive how the spectrum looks

like.

I am going to do this in the steps that I have in mind right now:

A. Single bunch

If there is only one single bunch, that has charge q, in Booster then it is clearly at the

wall current monitor, I have

I(t) = q
∞∑

k=−∞

δ(t− kTrev)

=
q

Trev

∞∑
n=−∞

einωrevt

(1)

where Trev is the period of revolution and ωrev = 2π/Trev is the angular revolution frequency.

The above is, of course, a very well known result that tells us that in Fourier space, the

spectrum are δ-functions separated by the revolution frequency.

B. Two bunches

Now instead of one bunch, I have two bunches in Booster. The second bunch is spaced

∆t from the first bunch. Also, I will assume that the charges are not equal between the

two bunches. Bunch 1 has charge q1 and bunch 2 has charge q2. Then clearly, I have the

following contributions by each bunch to the wall current monitor:

I1(t) = q1

∞∑
k=−∞

δ(t− kTrev)

=
q1

Trev

∞∑
n=−∞

einωrevt

(2)
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I2(t) = q2

∞∑
k=−∞

δ(t− kTrev −∆t)

=
q2

Trev

∞∑
n=−∞

einωrev(t−∆t)

=
q2

Trev

∞∑
n=−∞

einωrevte−inωrev∆t

(3)

And thus the total beam current seen on the wall current monitor is simply the superposition

of currents I1 and I2, i.e.

I(t) = I1(t) + I2(t) (4)

or in terms of sinusoids, I have

I(t) =
q1

Trev

∞∑
n=−∞

einωrevt +
q2

Trev

∞∑
n=−∞

einωrevte−inωrev∆t (5)

1. Check

Now, before I continue, I want to see if the result is consistent for having two bunches

of equal intensity that separated equally in Booster. This means that q1 = q2 = q and

∆t = Trev/2. Substituting these values into Eq. 4, I get

I(t) = q
∞∑

k=−∞

δ(t− kTrev) + q
∞∑

k=−∞

δ(t− kTrev − Trev/2)

= q

(
∞∑

k=−∞

δ(t− kTrev) +
∞∑

k=−∞

δ

[
t−
(
k +

1

2

)
Trev

]) (6)

which obviously shows that the δ-functions are spaced Trev/2 apart, i.e.

I(t) = q
∞∑

k=−∞

δ(t− kTrev/2) (7)

which tells me that the spectrum in Fourier space consists of δ-functions that are spaced

2π
Trev/2

= 2ωrev apart as expected. This can be checked by using Eq. 5,

I(t) =
q

Trev

(
∞∑

n=−∞

einωrevt +
∞∑

n=−∞

einωrevte−inπ

)

=
2q

Trev

∞∑
n=−∞

ei2nωrevt =
q

Trev/2

∞∑
n=−∞

ein(2ωrev)t

(8)
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because the odd terms in n cancel betwen the infinite sums, leaving only the even terms in

n to add.

Since everything checks out above, I will continue from Eq. 5,

I(t) =
1

Trev

∞∑
n=−∞

einωrevt
(
q1 + q2e

−inωrev∆t
)

(9)

which I can generalize! See the next section.

C. Generalization

I can generalize from two bunches to N = 84 buckets in Booster. Now, whether there are

84 or 81 bunches (with a 3 bunch notch) in Booster is not relevant in the analysis below.

This is because whether the bucket is filled or not comes from the value of the charge qk in

the bucket. In either case, I have, from Eq. 9,

I(t) =
1

Trev

∞∑
n=−∞

einωrevt
(
q1 + q2e

−in(1×2π/N) + q3e
−in(2×2π/N) + . . .+ q84e

−in(83×2π/N)
)

=
1

Trev

∞∑
n=−∞

einωrevt

N=84∑
k=1

qke
−in(k−1)2π/N

(10)

where I have made ∆t = Trev/N which means that ωrev∆t = ωrevTrev/N = 2π/N .

Eq. 10 tells me that, in general, the spectrum of I(t) are δ-functions that are spaced ωrev

apart and the “strength” of the δ-function at nωrev (note: n can be negative here) is given

by
∑84

k=1 qke
−in(k−1)2π/N .

1. Check

My sanity check of Eq. 10 can be done by making every bunch have the same charge,

i.e. qk = q. This means that

I(t) =
q

Trev

∞∑
n=−∞

einωrevt

N=84∑
k=1

e−in(k−1)2π/N (11)
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The second sum is a geometric series and has an analytic solution when n is not an integer

multiple of N (second line on the rhs below)

N=84∑
k=1

e−in(k−1)2π/N =


N if n = pN , p ∈ Z

1− e−i2nπ

1− e−i2nπ/N
= 0 otherwise

(12)

Therefore, I(t) becomes

I(t) =
Nq

Trev

∞∑
p=−∞

eipNωrevt =
q

TRF

∞∑
p=−∞

eipωRFt (13)

where TRF = Trev/N is the RF period and ωRF = Nωrev is the RF angular frequency. Again,

in Fourier space, I have δ-functions that are spaced ωRF apart.

D. All buckets filled with nearly the same charge

If all the buckets are filled with nearly the same charge, I have

qk = q0(1 + εk) (14)

where q0 = Q/N if all the buckets are equally filled from a total charge Q and εk is the

variation parameter. The requirement on εk is that

N∑
k=1

εk = 0 (15)

so that Eq. 14 sums to the total charge in Booster

N∑
k=1

qk =
N∑
k=1

q0(1 + εk) = Nq0 = Q (16)

I will substitute Eq. 14 into Eq. 10 to get

I(t) =
q0

Trev

∞∑
n=−∞

einωrevt

N=84∑
k=1

(1 + εk)e
−in(k−1)2π/N

=
q0

Trev

(
∞∑

n=−∞

einωrevt

N=84∑
k=1

e−in(k−1)2π/N +
∞∑

n=−∞

einωrevt

N=84∑
k=1

εke
−in(k−1)2π/N

) (17)

The first sum is exactly Eq. 13 and the second gives me the size of the revolution harmonics

that are not also multiples of the RF frequency

I(t) =
q0

TRF

∞∑
p=−∞

eipωRFt +
q0

Trev

∞∑
n=−∞

einωrevt

N=84∑
k=1

εke
−in(k−1)2π/N (18)
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1. The revolution harmonics term

Let me concentrate on the revolution harmonics term in Eq. 18

Iε(t) =
q0

Trev

∞∑
n=−∞

einωrevt

N=84∑
k=1

εke
−in(k−1)2π/N (19)

which in general can only be calculated numerically. Let’s see whether I can do more by

considering a special case.

2. Special case

I will look at the nth revolution harmonic. It has the following strength

Iε(n) =
q0

Trev

N=84∑
k=1

εke
−in(k−1)2π/N (20)

I am going to take a stab at calculating Iε for the special case when |εk| = ε, this means

that

Iε(n) =
q0

Trev

ε
N=84∑
k=1

Pke−in(k−1)2π/N (21)

where I have introduced Pk that has a 50/50 chance for being either −1 or 1 with the

requirement that
∑N

k=1Pk = 0 because of Eq. 15.

For n = pN , i.e. multiples of the harmonic number,

Iε(pN) =
q0

Trev

ε
N=84∑
k=1

Pke−ip(k−1)2π =
q0

Trev

ε
N=84∑
k=1

Pk = 0 (22)

This means that there are no corrections to the strengths of the δ-functions of the harmonics

of the RF and thus power from these RF harmonics.

For the other revolution harmonics, the only way to calculate the value of Iε is numerically.

However, since every injection into Booster has a different current distribution, I can find

the average power from an infinite number of Booster injections to calculation the power

requirement for the HOM resistor.

3. Special case: power in revolution harmonics

I will continue to use the special case discussed above for the case when n is not a multiple

of the harmonic number N . The time averaged power 〈Pε〉m for the nth revolution harmonic
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for injection m is given by

〈Pn〉m = 〈Re[Iε(n)]× Re[Vε(n)]〉m (23)

since only the real parts of Iε and Vε contribute to any power loss.

From Eq. 21 and including the sinusoidal part, I have

Iε(n; t) =
q0

Trev

einωrevtε

N=84∑
k=1

Pke−in(k−1)2π/N ≡ |Jn|eiθneinωrevt (24)

where Jn = q0
Trev

ε
∑N=84

k=1 Pke−in(k−1)2π/N = |Jn|eiθn . The voltage, Vε(n) is

Vε(n) = Iε(n)Z(nωrev) = |Jn|eiθneinωrevt × |Z(nωrev)|eiφn (25)

where Z(ω) is the impedance seen by the beam current.

I can multiply Iε(n) and Vε(n) to get

Iε(n)Vε(n) = |Jn|2|Z(nωrev)|ei[2(nωrevt+θn)+φn] (26)

and the time average of the real part of the above is

〈Re[Iε(n)]Re[Vε(n)]〉 = |Jn|2|Z(nωrev)|〈cos(nωrevt+ θn) cos(nωrevt+ θn + φn]〉

=
|Jn|2|Z(nωrev)|

2
cosφn

=
|Jn|2Re[Z(nωrev)]

2

(27)

which is another way of deriving the rms power. Note: |Z| cosφ = R

Now, like I said above, I cannot really find a simple formula for |Jn| for each Booster

injection. However, for an infinite number of injections, I can calculate the mean 〈|Jn|〉

because the bunch current variations are random.

4. Special case: 〈|Jn|2〉

For the special case that I am considering, I have found numerically that

〈|Jn|2〉 =
q0

Trev

ε

〈∣∣∣∣∣
N=84∑
k=1

Pke−in(k−1)2π/N

∣∣∣∣∣
2〉

= 84

(
q0

Trev

)2

ε2 (28)

is independent of n. I’ll prove the above in the appendix.
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TABLE I. HOM modes of the 2nd harmonic cavity at injection

Mode Frequency (MHz) Shunt impedance kΩ Q

1 142.1 3.7 616

2 189.1 6.7 211

4 293.6 6.3 172

5. Numerical example: power from beam RF harmonics

I have to sum the power contributed from each HOM. The HOM frequencies, Q’s and

shunt impedances at injection are summarized inTable I, i.e. when the fundamental of the

2nd harmonic cavity is at 75.7 MHz. Mode 3 is not listed because the stretched wire does

not excite it. These measurments can be found in Table 15 of our writeup. 6 dB attenuators

were connected to the HOM cavity to obtain these values.

Since this is just a back of the envelope calculation, I am going to assume that the shunt

impedance and Q of each mode remains constant during the ramp. This is a reasonable

assumption because for the present operating condition that is constrained to injection only,

the modes reach their maximum excursion at 3 ms and then return back to their injection

frequencies. See section 10.1 of writeup. Also, since the Q and shunt impedance is also

the worst at injection, this will be a worst case calculation. The measured evolution of the

modes up to 5 ms are shown in dashed lines in Fig. 1. The red dashed lines show the width

of the mode (∆f = fres/Q) and the situation where the mode frequency stays constant.

The current that comes from the RF harmonic for an infinite number of turns is given

by the coefficient of the e±ipωRFt term from the first sum of Eq. 18, i.e.

IRF =
2q0

TRF

(29)

where the “2” comes from the positive and negative harmonics. Therefore, the rms power

for any of the modes that the RF harmonics cross is

PRF = I2
RFR/2 = 2

(
q0

TRF

)2

R (30)

Note that TRF clearly depends on where on the RF ramp the harmonic crosses the mode.

Again, since this is the worst case back of the envelope calculation, I will make set TRF

is at its minimum. And for Booster, this is when the RF frequency is at 53 MHz. Injection
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FIG. 1. The measured modes (dashed lines) superimposed onto RF harmonics during the Booster

ramp. The red dashed lines show the width of the mode if it is held constant during the ramp.

Q’s and shunt impedances are also the worst.

In the worst case, using Table I, and setting the charge per bunch q0 = 6× 1012 × 1.6×

10−19/84 C = 1.1× 10−8 C, I can calculate the power dumped into the HOM when the RF

harmonic sits indefinitely on the mode

mode 1 : Pmode1 = 2

(
q0

TRF

)2

R = 2

(
1.1× 10−8 C

1/(53× 106 Hz)

)2

× (3700 Ω) = 2.7 kW

mode 2 : Pmode2 = 2

(
q0

TRF

)2

R = 2

(
1.1× 10−8 C

1/(53× 106 Hz)

)2

× (6700 Ω) = 4.9 kW

mode 4 : Pmode4 = 2

(
q0

TRF

)2

R = 2

(
1.1× 10−8 C

1/(53× 106 Hz)

)2

× (6300 Ω) = 4.6 kW


(31)

This above solution only applies to the beam that sits on the HOMs indefinitely. But in

reality, they do not. So, when I zoom into Fig. 1, each mode crosses the RF harmonic at

most twice, and each time about 0.5 ms. For simplicity, if I assume 1 ms total crossing time

for each mode, then I have the duty factor

η = (1× 10−3 s)× (15 Hz)/1 s = 0.015 (32)

Therefore, the power that is deposited in the HOM resistors in the worst case for this

duty factor is

PRF(1.5%) = η(Pmode1 + Pmode2 + Pmode4) = 0.015× (2.7 + 4.9 + 4.6) kW = 183 W (33)
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Since we have 4 HOM resistors, the power into each resistor is about 45 W if the mode is

4-fold symmetric. If it is a dipole mode, then the power is dumped into two resistors. The

power is thus 90 W. So 150 W resistors are more than sufficient for our purposes.

6. Numerical example: power from beam revolution harmonics

In this calculation, I will assume that the bunch variation is ±10%, thus η = 0.1.

I use these numbers which I substitute into Eq. 27 with the averaged power for each

revolution harmonic to get

Pharmonics =
∑
n

〈|Jn|2〉Re[Z(nωrev)]

2
= 42

(
q0

Trev

)2

ε2
∑
n

Re[Z(nωrev)] ≈ 0.7 W (34)

where I have summed over 600 revolution harmonics centred around each HOM. See

hom resistor1.nb for how Pharmonics came about.

Reminder: The above is for an infinite number of turns averaged over an infinite number

of injections.

Therefore, even without taking into account the duty factor and the negative harmonics,

the power dumped into the HOM resistors from these revolution harmonics are small when

compared to the RF harmonics and can be neglected.

Appendix A: Simplifying

〈∣∣∣∑N=84
k=1 Pke−in(k−1)2π/N

∣∣∣2〉
I want to simplify

s =

〈∣∣∣∣∣
N=84∑
k=1

Pke−in(k−1)2π/N

∣∣∣∣∣
2〉

(A1)

which after expanding is

s =

〈(
N∑
k=1

Pk cos
2πn(k − 1)

N

)2

+

(
N∑
k=1

Pk sin
2πn(k − 1)

N

)2〉
(A2)

Since I am going to take an infinite average, the cross terms in the above expansion should

vanish because they consist of terms that look like PiPj cos 2πn(i− 1)/N cos 2πn(j − 1)/N

and PiPj sin 2πn(i− 1)/N sin 2πn(j − 1)/N which by construction∑
ij

PiPj = 0 if i 6= j (A3)
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Thus

s =

〈
N∑
k=1

P2
k cos2 2πn(k − 1)

N
+

N∑
k=1

P2
k sin2 2πn(k − 1)

N

〉

= 〈
N∑
k=1

P2
k〉

= N = 84

(A4)

The last two lines come from recalling that P = ±1. Notice that this result is independent

of n.

I have checked that the above result numerically using Mathematica. See harmonic size.nb.
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